Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles

Author:

Zeron Y,Ocheretny A,Kedar O,Borochov A,Sklan D,Arav A

Abstract

Follicle dynamics and oocyte viability in Holstein primiparous and multiparous cows and the relationships between fertility and the biochemical and physical properties of oocyte membranes with season were examined. The conception rates of primiparous (n = 70 885) and multiparous (n = 143 490) cows differed, peaking in the winter and decreasing in the summer. The number of follicles 3-8 mm in diameter per ovary was higher in winter (19.6) compared with summer (12.0). However, in winter the percentage of ovaries with fewer than ten follicles per ovary was 16%, in contrast to 50% in summer. After aspiration of follicles, 7.5 oocytes per ovary were found in winter and 5.0 oocytes per ovary in summer. Cleavage to the two- to four-cell stage after chemical activation was greater in winter than in summer; this was enhanced at the morula stage and embryo development to the blastocyst stage was significantly higher in winter than in summer. Determination of the lipid phase transition in oocyte membranes revealed a shift of 6 degrees C between summer and winter. Fatty acid composition of phospholipids from follicular fluid, granulosa cells and oocytes indicated that there was a higher percentage of saturated fatty acids during the summer and that the percentages of mono-unsaturated and polyunsaturated fatty acids were higher in oocytes and granulosa cells during the winter. Oocytes and granulosa cells had similar fatty acid compositions, in contrast to follicular fluid. These results may explain the differences in the ability of oocytes to develop to the blastocyst stage at different seasons. Thus, temperature changes may lead to changes in membrane properties, which, in turn, can influence oocyte function and fertility.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3