Remodelling the paternal chromatin at fertilization in mammals

Author:

McLay DW,Clarke HJ

Abstract

At fertilization, the highly condensed and transcriptionally inert chromatin of the spermatozoa becomes remodelled into the decondensed and transcriptionally competent chromatin of the male pronucleus. The chromatin initially becomes dispersed and then transiently recondenses into a small mass upon entry into the ooplasm. This morphological change is coincident with and likely dependent on the replacement of the sperm-specific protamines by oocyte-supplied histones and the organization of the chromatin into nucleosomes. The chromatin then extensively decondenses within the male pronucleus and acquires many of the proteins that are associated with the maternal chromatin. Nonetheless, the paternal chromatin manifests distinct characteristics, including transient hyperacetylation of histone H4, increased transcription of endogenous and microinjected genes, and replication-independent demethylation of DNA. Sperm chromatin remodelling is controlled by an oocyte activity that appears during meiotic maturation and disappears approximately 3 h after activation (release from metaphase II arrest), and which requires factors associated with the germinal vesicle of the oocyte. The molecular components of this activity remain largely unknown. In frogs, nucleoplasmin is required to assemble histones H2A and H2B onto the paternal chromatin. Evidence is presented that related proteins may perform similar functions in mammals. Identifying the mechanisms that underlie sperm chromatin remodelling at fertilization may be relevant for understanding reprogramming of somatic cell nuclei after transfer into oocytes.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 241 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3