Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro

Author:

Cetica P,Pintos L,Dalvit G,Beconi M

Abstract

Few studies demonstrate at a biochemical level the metabolic profile of both cumulus cells and the oocyte during maturation. The aim of the present study was to investigate the differential participation of enzymatic activity in cumulus cells and in the oocyte during in vitro maturation (IVM) by studying the activity of enzymes involved in the control of amino acid metabolism, alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and the tricarboxylic acid (TCA) cycle, isocitrate dehydrogenase (IDH) and malate dehydrogenase (MDH). No NAD-dependent isocitrate dehydrogenase (NAD-IDH) activity was recorded in cumulus-oocyte complexes (COCs). ALT, AST, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and MDH enzymatic units remained constant in cumulus cells and oocytes during IVM. Specific activities increased in oocytes and decreased in cumulus cells as a result of IVM (P<0.05). Similar activity of both transaminases was detected in cumulus cells, unlike in the oocyte, in which activity of AST was 4.4 times greater than that of ALT (P<0.05). High NADP-IDH and MDH activity was detected in the oocyte. Addition of alanine, aspartate, isocitrate + NADP, oxaloacetate or malate + NAD to maturation media increased the percentage of denuded oocytes reaching maturation (P<0.05), in contrast to COCs in which differences were not observed by addition of these substrates and co-enzymes. The activity of studied enzymes and the use of oxidative substrates denotes a major participation of transaminations and the TCA cycle in the process of gamete maturation. The oocyte thus seems versatile in the use of several oxidative substrates depending on the redox state.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3