Expression of the insulin-like growth factor (IGF) system in the bovine oviduct at oestrus and during early pregnancy

Author:

Pushpakumara PG,Robinson RS,Demmers KJ,Mann GE,Sinclair KD,Webb R,Wathes DC

Abstract

Early mammalian embryo development in vitro can be enhanced by co-culture with oviductal cells and by the addition of insulin-like growth factors (IGFs). This study examined the expression patterns of the oviductal IGF system in cattle in relation to the number of days after oestrus and the presence or absence of embryos. Oviducts were collected from: (i) 66 nulliparous heifers on day 3, day 6 or day 16 after insemination and from (ii) ten non-pregnant, lactating cows on day 0 or day 1 of the oestrous cycle. Oviducts were coiled, frozen whole and sectioned for in situ hybridization. Expression patterns of mRNAs encoding IGF-I, IGF-II, type 1 IGF receptor (IGF-1R), and the IFG binding proteins (IGFBP)-1, -3 and -5 were determined from autoradiographs. Separate measurements were made for the mucosa and muscle layers of the infundibulum, ampulla and isthmus. None of the parameters measured differed between heifers with or without the presence of an embryo. mRNAs encoding IGF-I and IGF-1R were present in the mucosa and muscle of all three oviductal regions, and the highest value of IGF-I mRNA was measured in heifers on day 3. IGF-II mRNA was expressed predominantly in the muscle wall. IGFBP-1 mRNA was not detectable, whereas mRNAs encoding IGFBP-3 and -5 were expressed in both the muscle and mucosa. IGFBP-3 expression was higher in cows on day 0 and day 1 of the oestrous cycle than in heifers on day 3, day 6 and day 16 after insemination. A peak of IGFBP-5 expression was reached on day 6. Locally or systemically produced IGFs, regulated by IGFBPs, may act directly on the embryo or indirectly via modulation of oviductal secretions and muscular activity to influence the success of early embryo development.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3