Protection of sperm DNA against oxidative stress in vivo by accessory sex gland secretions in male hamsters

Author:

Chen H,Cheung MP,Chow PH,Cheung AL,Liu W,O WS

Abstract

Reactive oxygen species scavengers present in male accessory sex gland secretions might afford antioxidant protection to sperm DNA. This study was conducted to determine whether accessory sex gland secretions protect the genome and function of spermatozoa against oxidative damage in the uterus. Male golden hamsters were divided into four experimental groups: (i) all accessory sex glands removed; (ii) ampullary glands removed; (iii) ventral prostate gland removed and (iv) sham-operated controls. Ejaculated spermatozoa recovered from uteri 15-30 min after mating with experimental males and caput and cauda epididymal spermatozoa obtained from intact males were incubated in 0-20 mmol NADPH l(-1) for 2 h. These spermatozoa and untreated uterine spermatozoa were processed for two types of comet assay (single cell gel electrophoresis): alkaline comet assay (pH > 13) which revealed single-strand DNA breakage and neutral comet assay (pH 9) which revealed double-strand DNA breakage. In comparison with the sham-operated controls, spermatozoa that had not been exposed to accessory sex gland secretions had a higher incidence and more extensive single-strand DNA damage with increasing concentrations of NADPH. Spermatozoa from hamsters without ampullary glands and from hamsters without the ventral prostate glands were similar to those of the control group. After incubation with NADPH, the capacity of spermatozoa from hamsters without accessory glands and from sham-operated controls to fuse with oocytes in vitro was reduced. However, only hamsters without accessory glands showed a negative correlation between single-strand DNA damage and sperm-oocyte fusion. Cauda epididymal spermatozoa were less susceptible to NADPH treatment compared with caput epididymal spermatozoa. The results of the present study showed that male accessory sex gland secretions can preserve the integrity of the sperm genome.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3