The earliest stages of folliculogenesis in vitro

Author:

Smitz JE,Cortvrindt RG

Abstract

In recent years several follicle culture systems have been pioneered in different mammalian species for studying ovarian folliculogenesis and culturing immature oocytes. Applications of these in vitro techniques include fertility preservation for humans, conservation of rare animals and development of oocyte banks for research purposes. Immature female gametes in the ovarian cortex can be cryopreserved for later use if culture techniques are available afterwards to promote growth and maturation. This review focuses on biochemical and biophysical factors related to oocyte culture in mice, the only animal in which live offspring have been produced after folliculogenesis in vitro. The advantage of using mice for these studies is that, in parallel to development of follicle culture systems, essential knowledge on folliculogenesis can be obtained from knockout mouse models. Recent experiments in mice stressed the principal role of the oocyte in follicle development and the strict timing of the biological processes underlying oogenesis in vitro. In large domestic animals and humans, study of oocyte culture is confounded by the constitutively prolonged nature of ovarian follicle development. In humans, only some aspects of follicle development have been studied because of the limited availability of suitable material for experimentation, technical difficulties related to manipulation of very small structures and lack of knowledge on physiological regulation of the early stages of follicle growth. Only a few reports describe ovarian follicular growth in vitro. In this review, relevant information on hormonal and growth factor regulation of the earliest stages of follicle growth in mammals is reviewed. Techniques are becoming available for the precise isolation of distinct classes of follicle and powerful molecular biology techniques can be used in studies of ovarian tissue culture.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3