Abstract
Oestrogen is an essential component of female reproduction, with well-characterized functions in the uterus, ovaries, mammary gland and hypothalamic-pituitary axis. The mechanism of oestrogen action involves mediation of the rate of transcription by nuclear-localized oestrogen receptor molecules. Two oestrogen receptors are present in mouse tissues, oestrogen receptors alpha and beta. Each receptor exhibits differential tissue expression patterns. Mouse models with genetically engineered disruption or 'knockout' of the oestrogen receptors have been developed. Characterization of the resulting defects in reproductive tissues as well as alterations in physiological and genomic responses has given insight into the receptor-mediated effects of oestrogen in reproduction. Oestrogen receptor alpha knockout females are infertile because they are anovulatory, have disruption in LH regulation and have uteri that are insensitive to oestrogen. In contrast, oestrogen receptor beta knockout females are sub-fertile and primarily lack efficient ovulatory function. Mice with deletion of both oestrogen receptors alpha and beta are similar to those lacking oestrogen receptor alpha only, but exhibit a unique ovarian pathology. These observed phenotypes elucidate the relative roles of the oestrogen receptors in reproductive functions of female rodents.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
218 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献