Role of transforming growth factor-β1 in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells

Author:

Zheng Xiaofeng,Price Christopher A,Tremblay Yves,Lussier Jacques G,Carrière Paul D

Abstract

Survival and inhibitory factors regulate steroidogenesis and determine the fate of developing follicles. The objective of this study was to determine the role of transforming growth factor-β1 (TGFB1) in the regulation of estradiol-17β (E2) and progesterone (P4) secretion in FSH-stimulated bovine granulosa cells. Granulosa cells were obtained from 2 to 5 mm follicles and cultured in serum-free medium. FSH dose (1 and 10 ng/ml for 6 days) and time in culture (2, 4, and 6 days with 1 ng/ml FSH) increased E2secretion and mRNA expression of E2-related enzymes cytochrome P450 aromatase (CYP19A1) and 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1), but notHSD17B7. TGFB1 in the presence of FSH (1 ng/ml) inhibited E2secretion, and decreased mRNA expression of FSH receptor(FSHR),CYP19A1, andHSD17B1, but notHSD17B7. FSH dose did not affect P4secretion and mRNA expression of 3β-hydroxysteroid dehydrogenase (HSD3B) and α-glutathioneS-transferase (GSTA), but inhibited the amount of steroidogenic acute regulatory protein(STAR)mRNA. Conversely, P4and mRNA expression ofSTAR, cytochrome P450 side-chain cleavage(CYP11A1),HSD3B, andGSTAincreased with time in culture. TGFB1 inhibited P4secretion and decreased mRNA expression ofSTAR,CYP11A1,HSD3B, andGSTA. TGFB1 modified the formation of granulosa cell clumps and reduced total cell protein. Finally, TGFB1 decreased conversion of androgens to E2, but did not decrease the conversion of estrone (E1) to E2and pregnenolone to P4. Overall, these results indicate that TGFB1 counteracts stimulation of E2and P4synthesis in granulosa cells by inhibiting key enzymes involved in the conversion of androgens to E2and cholesterol to P4without shutting down HSD17B reducing activity and HSD3B activity.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3