Advancing the understanding of the embryo transcriptome co-regulation using meta-, functional, and gene network analysis tools

Author:

Rodriguez-Zas S L,Ko Y,Adams H A,Southey B R

Abstract

Embryo development is a complex process orchestrated by hundreds of genes and influenced by multiple environmental factors. We demonstrate the application of simple and effective meta-study and gene network analyses strategies to characterize the co-regulation of the embryo transcriptome in a systems biology framework. A meta-analysis of nine microarray experiments aimed at characterizing the effect of agents potentially harmful to mouse embryos improved the ability to accurately characterize gene co-expression patterns compared with traditional within-study approaches. Simple overlap of significant gene lists may result in under-identification of genes differentially expressed. Sample-level meta-analysis techniques are recommended when common treatment levels or samples are present in more than one study. Otherwise, study-level meta-analysis of standardized estimates provided information on the significance and direction of the differential expression. Cell communication pathways were highly represented among the genes differentially expressed across studies. Mixture and dependence Bayesian network approaches were able to reconstruct embryo-specific interactions among genes in the adherens junction, axon guidance, and actin cytoskeleton pathways. Gene networks inferred by both approaches were mostly consistent with minor differences due to the complementary nature of the methodologies. The top–down approach used to characterize gene networks can offer insights into the mechanisms by which the conditions studied influence gene expression. Our work illustrates that further examination of gene expression information from microarray studies including meta- and gene network analyses can help characterize transcript co-regulation and identify biomarkers for the reproductive and embryonic processes under a wide range of conditions.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3