Dietary sodium intake regulates angiotensin II type 1, mineralocorticoid receptor, and associated signaling proteins in heart

Author:

Ricchiuti Vincent,Lapointe Nathalie,Pojoga Luminita,Yao Tham,Tran Loc,Williams Gordon H,Adler Gail K

Abstract

Liberal or high-sodium (HS) intake, in conjunction with an activated renin–angiotensin–aldosterone system, increases cardiovascular (CV) damage. We tested the hypothesis that sodium intake regulates the type 1 angiotensin II receptor (AT1R), mineralocorticoid receptor (MR), and associated signaling pathways in heart tissue from healthy rodents. HS (1.6% Na+) and low-sodium (LS; 0.02% Na+) rat chow was fed to male healthy Wistar rats (n=7 animals per group). Protein levels were assessed by western blot and immunoprecipitation analysis. Fractionation studies showed that MR, AT1R, caveolin-3 (CAV-3), and CAV-1 were located in both cytoplasmic and membrane fractions. In healthy rats, consumption of an LS versus a HS diet led to decreased cardiac levels of AT1R and MR. Decreased sodium intake was also associated with decreased cardiac levels of CAV-1 and CAV-3, decreased immunoprecipitation of AT1R–CAV-3 and MR–CAV-3 complexes, but increased immunoprecipitation of AT1R/MR complexes. Furthermore, decreased sodium intake was associated with decreased cardiac extracellular signal-regulated kinase (ERK), phosphorylated ERK (pERK), and pERK/ERK ratio; increased cardiac striatin; decreased endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS), but increased peNOS/eNOS ratio; and decreased cardiac plasminogen activator inhibitor-1. Dietary sodium restriction has beneficial effects on the cardiac expression of factors associated with CV injury. These changes may play a role in the cardioprotective effects of dietary sodium restriction.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3