Signaling pathways regulating FSH- and amphiregulin-induced meiotic resumption and cumulus cell expansion in the pig

Author:

Prochazka R,Blaha M,Nemcova L

Abstract

To define signaling pathways that drive FSH- and epidermal growth factor (EGF)-like peptide-induced cumulus expansion and oocyte meiotic resumption, in vitro cultured pig cumulus–oocyte complexes were treated with specific protein kinase inhibitors. We found that FSH-induced maturation of oocytes was blocked in germinal vesicle (GV) stage by protein kinase A (PKA), MAPK14, MAPK3/1, and EGF receptor (EGFR) tyrosine kinase inhibitors (H89, SB203580, U0126, and AG1478 respectively) whereas phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog (PI3K/AKT) inhibitor (LY294002) blocked maturation of oocytes in metaphase I (MI). Amphiregulin (AREG)-induced maturation of oocytes was efficiently blocked in GV by U0126, AG1478, and low concentrations of LY294002; H89, SB203580, and high concentrations of LY294002 allowed the oocytes to undergo breakdown of GV and blocked maturation in MI. Both FSH- and AREG-induced cumulus expansion was incompletely inhibited by H89 and completely inhibited by SB203580, U0126, AG1478, and LY294002. The inhibitors partially or completely inhibited expression of expansion-related genes (HAS2, PTGS2, and TNFAIP6) with two exceptions: H89 inhibited only TNFAIP6 expression and LY294002 increased expression of PTGS2. The results of this study are consistent with the idea that PKA and MAPK14 pathways are essential for FSH-induced transactivation of the EGFR, and synthesis of EGF-like peptides in cumulus cells and MAPK3/1 is involved in regulation of transcriptional and posttranscriptional events in cumulus cells required for meiotic resumption and cumulus expansion. PI3K/AKT signaling is important for regulation of cumulus expansion, AREG-induced meiotic resumption, and oocyte MI/MII transition. The present data also indicate the existence of an FSH-activated and PKA-independent pathway involved in regulation of HAS2 and PTGS2 expression in cumulus cells.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3