Elucidating the role of pigment epithelium-derived factor (PEDF) in metabolic PCOS models

Author:

Silber Michal123,Miller Irit1,Bar-Joseph Hadas1,Ben-Ami Ido45,Shalgi Ruth1

Affiliation:

1. 1Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

2. 2Department of OB/GYN, Meir Medical Center, Kfar Saba, Israel

3. 3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

4. 4IVF and Fertility Unit, Department of OB/GYN, Shaare Zedek Medical Center, Jerusalem, Israel

5. 5The Hebrew University Medical School of Jerusalem, Jerusalem, Israel

Abstract

PCOS is the most common endocrinopathy in women; associated with obesity and insulin resistance (IR). IR leads to accumulation of advanced-glycation-end-products (AGEs) and their receptor, RAGE. PCOS patients have increased levels of vascular endothelial growth factor (VEGF), interleukin 6/8 (IL-6/8) and anti-Mϋllerian-hormone (AMH). PEDF is a secreted-glycoprotein known for its anti-angiogenic and anti-inflammatory properties. We aimed to elucidate the role of PEDF in the pathogenesis and treatment of PCOS. We used a prenatal PCOS mouse model and fed the female offspring a high-fat diet, inducing metabolic PCOS (met.PCOS) characteristics. Female offspring were divided into three groups: control; met.PCOS; met.PCOS + recombinant PEDF (rPEDF). Met.PCOS mice gained more weight, had elevated serum IL-6 and higher mRNA levels of AMH, PEDF and RAGE in their granulosa cells (GCs) than met.PCOS + rPEDF mice. An in vitro Met.PCOS model in human GCs (KGN) line was induced by prolonged incubation with insulin/AGEs, causing development of IR. Under the same conditions, we observed an elevation of VEGF, IL-6/8 mRNAs, concomitantly with an increase in PEDF mRNA, intracellular protein levels, and an elevation of PEDF receptors (PEDF-Rs) mRNA and protein. Simultaneously, a reduction in the secretion of PEDF from GCs, was measured in the medium. The addition of rPEDF (5 nM) activated P38 signaling, implying that PEDF-Rs maintained functionality, and negated AGE-induced elevation of IL-6/8 and VEGF mRNAs. Decreased PEDF secretion may be a major contributor to hyperangiogenesis and chronic inflammation, which lie at the core of PCOS pathogenesis. rPEDF treatment may restore physiological angiogenesis inflammatory balance, thus suggesting a potential therapeutic role in PCOS.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3