Interactions of insulin-like growth factor I with dexamethasone on trabecular bone density and mineral metabolism in rats

Author:

Binz Katharina,Schmid Christoph,Bouillon Roger,Froesch E Rudolf,Jürgensen Kay,Hunziker Ernst B

Abstract

Binz K, Schmid C, Bouillon R, Froesch ER, Jürgensen K, Hunziker EB. Interactions of insulin-like growth factor I with dexamethasone on trabecular bone density and mineral metabolism in rats. Eur J Endocrinol 1994;130:387–93. ISSN 0804–4643 Glucocorticoid treatment causes osteoporosis and growth retardation in humans. Insulin-like growth factor I (IGF-I) stimulates differentiation and replication of cultured osteoblast-like cells and induces longitudinal bone growth in IGF-I-deficient rats. We investigated the influence of subcutaneously infused IGF-I on bone and mineral metabolism of male rats treated with a high dose of dexamethasone. Dexamethasone was added to the drinking water in a concentration of 1 mg/l. After 30 days of dexamethasone treatment, recombinant human IGF-I (300 μg/day) or solvent was infused sc by osmotic minipumps for 21 days while dexamethasone was continued. Age-matched untreated male rats served as healthy controls. Dexamethasone-treated rats lost weight. Their IGF-I levels were decreased to 36% of healthy controls. Infusion of IGF-I resulted in an increase in IGF-I serum levels (582% compared to healthy controls) and allowed some weight gain. Osteocalcin and calcitriol levels were markedly decreased in dexamethasone-treated rats and were not influenced significantly by IGF-I infusion. In contrast, IGF-I treatment restored the free calcitriol concentration (molar ratio of calcitriol to vitamin D-binding protein) towards normal. Furthermore, infusion of IGF-I partially corrected the dexamethasone-induced hyperinsulinemia. Histomorphometric analysis revealed no difference in vertebral trabecular bone density (i.e. growth-independent bone remodeling) between the three groups. In contrast, mean trabecular bone density in tibial metaphyses was increased markedly by dexamethasone, presumably due to osteoclast inhibition. Insulin-like growth factor I infusion did not significantly influence these structural metaphyseal bone parameters. We conclude that IGF I-infusion in male rats treated with high doses of dexamethasone reduces insulin resistance and restores calcitriol production but not osteoblast function or responsiveness to calcitriol. K Binz, Division de Diabétologie, Hôpital Cantonal Universitaire, 1211 Geneva, Switzerland

Publisher

Bioscientifica

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3