Estrogen-related receptor γ2 controls NaCl uptake to maintain ionic homeostasis

Author:

Shih Shang-Wu12ORCID,Yan Jia-Jiun1,Wang Yi-Hsing1,Tsou Yi-Ling1,Chiu Ling12,Tseng Yung-Che1,Chou Ming-Yi2,Hwang Pung-Pung12

Affiliation:

1. 1Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan

2. 2Department of Life Science, National Taiwan University, Taipei, Taiwan

Abstract

Estrogen-related receptors (ERRs) are known to function in mammalian kidney as key regulators of ion transport-related genes; however, a comprehensive understanding of the physiological functions of ERRs in vertebrate body fluid ionic homeostasis is still elusive. Here, we used medaka (Oryzias melastigma), a euryhaline teleost, to investigate how ERRs are involved in ion regulation. After transferring medaka from hypertonic seawater to hypotonic freshwater (FW), the mRNA expression levels of errγ2 were highly upregulated, suggesting that Errγ2 may play a crucial role in ion uptake. In situ hybridization showed that errγ2 was specifically expressed in ionocytes, the cells responsible for Na+/Cl transport. In normal FW, ERRγ2 morpholino knockdown caused reductions in the mRNA expression of Na+/Cl cotransporter (Ncc), the number of Ncc ionocytes, Na+/Cl influxes of ionocytes, and whole-body Na+/Cl contents. In FW with low Na+ and low Cl, the expression levels of mRNA for Na+/H+ exchanger 3 (Nhe3) and Ncc were both decreased in Errγ2 morphants. Treating embryos with DY131, an agonist of Errγ, increased the whole-body Na+/Cl contents and ncc mRNA expression in Errγ2 morphants. As such, medaka Errγ2 may control Na+/Cl uptake by regulating ncc and/or nhe3 mRNA expression and ionocyte number, and these regulatory actions may be subtly adjusted depending on internal and external ion concentrations. These findings not only provide new insights into the underpinning mechanism of actions of ERRs, but also enhance our understanding of their roles in body fluid ionic homeostasis for adaptation to changing environments during vertebrate evolution.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3