Advancing spine care through AI and machine learning: overview and applications

Author:

Cina Andrea12,Galbusera Fabio1ORCID

Affiliation:

1. Spine Center, Schulthess Clinic, Zurich, Switzerland

2. Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland

Abstract

Machine learning (ML), a subset of artificial intelligence, is crucial for spine care and research due to its ability to improve treatment selection and outcomes, leveraging the vast amounts of data generated in health care for more accurate diagnoses and decision support. ML's potential in spine care is particularly notable in radiological image analysis, including the localization and labeling of anatomical structures, detection and classification of radiological findings, and prediction of clinical outcomes, thereby paving the way for personalized medicine. The manuscript discusses ML's application in spine care, detailing supervised and unsupervised learning, regression, classification, and clustering, and highlights the importance of both internal and external validation in assessing ML model performance. Several ML algorithms such as linear models, support vector machines, decision trees, neural networks, and deep convolutional neural networks, can be used in the spine domain to analyze diverse data types (visual, tabular, omics, and multimodal).

Publisher

Bioscientifica

Reference100 articles.

1. Machine learning: trends, perspectives, and prospects;Jordan,2015

2. A study of big data evolution and research challenges;Gupta,2019

3. Analysing the implementation of machine learning in healthcare;Dalal,2020

4. Healthcare predictive analytics using machine learning and deep learning techniques: a survey;Badawy,2023

5. Personalized medicine could transform healthcare;Mathur,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3