m6A methyltransferase METTL3 inhibits endometriosis by regulating alternative splicing of MIR17HG

Author:

Li Qian1,Yang Li1,Zhang Feng1,Liu Jiaxi1,Jiang Min1,Chen Yannan1ORCID,Ren Chenchen1

Affiliation:

1. Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China

Abstract

In brief Inflammation and abnormal immune response are the key processes in the development of endometriosis (EMs), and m6A modification can regulate the inflammatory response. This study reveals that METTL3-mediated N6-methyladenosine (m6A) modification plays an important role in EMs. Abstract m6A modification is largely involved in the development of different diseases. This study intended to investigate the implication of m6A methylation transferase methyltransferase like 3 (METTL3) in EMs. EMs- and m6A-related mRNAs and long non-coding RNAs were identified through bioinformatics analysis. Next, EM mouse models established by endometrial autotransplantation and mouse endometrial stromal cell (mESC) were prepared and treated with oe-METTL3 or sh-MIR17HG for pinpointing the in vitro and in vivo effects of METTL3 on EMs in relation to MIR17HG through the determination of mESC biological processes as well as estradiol (E2) and related lipoprotein levels. We demonstrated that METTL3 and MIR17HG were downregulated in the EMs mouse model. Overexpression of METTL3 suppressed the proliferation, migration, and invasion of mESCs. In addition, METTL3 enhanced the expression of MIR17HG through m6A modification. Moreover, METTL3 could inhibit the E2 level and alter related lipoprotein levels in EMs mice through the upregulation of MIR17HG. The present study highlighted that the m6A methylation transferase METTL3 prevents EMs progression by upregulating MIR17HG expression.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3