Age-associated changes in miRNA profile of bovine follicular fluid

Author:

Nagata Shuta1,Inoue Yuki1,Sato Takuya1,Tanaka Keisuke1,Shinozawa Akihisa1,Shirasuna Komei1,Iwata Hisatala1ORCID

Affiliation:

1. Tokyo University of Agriculture, Funako, Atsugi, Japan

Abstract

In brief This study shows that ageing affects miRNA profiles in follicular fluid, and an miRNA that is highly abundant in the follicular fluid of young cows supports the growth of oocytes derived from early antral follicles. Abstract We examined age-associated changes in miRNA profiles in the follicular fluid (FF) of cows. The role of miR-19b, which is abundant in the FF of young cows, in in vitro growth of early antral follicles (EAFs)-derived oocytes was assessed. FF was collected from the antral follicles of young (20–40 months) and aged (>120 months) cows. The miRNA profiles were similar between the FF of both age groups, whereas the abundance of some miRNAs differed between these samples. The miRNA profiles in granulosa cells (GCs) and the spent culture medium of oocyte–GC complexes (OGCs) derived from EAFs were distinct. Some miRNA groups overlapped among the GCs, culture media, and FFs. miR-19b was highly abundant in the FF of young cows, GCs, and culture medium. The supplementation of OGC culture medium with miR-19b increased the diameter, acetylation levels, and fertilisation ability of the oocytes. To assess whether miR-19b was functional in the GCs, a dual-luciferase assay, suppression of target protein, and RNA-sequencing of the GCs followed by functional annotation of the differentially expressed genes (DEGs) were conducted. Functional annotation of the DEGs suggested that miR-19b influences genes associated with FoxO signalling, endocytosis, and NR3C1 in GCs. These results suggest that in FFs, ageing affects the abundance of miRNAs that have important roles in oocyte development.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Reference45 articles.

1. Interaction between growing oocytes and granulosa cells in vitro;Alam,2020

2. HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells;Baddela,2020

3. Characterization of ovarian follicular wave dynamics in women;Baerwald,2003

4. The cytokine profile of follicular fluid changes during ovarian ageing;Bouet,2020

5. 2012 cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle;da Silveira,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3