Effect of estradiol and IGF1 on glycogen synthesis in bovine uterine epithelial cells

Author:

Gonzalez Alexis1,Berg Malia D1,Southey Bruce1,Dean Matthew1ORCID

Affiliation:

1. Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Abstract

In brief Glucose is an important nutrient for the endometrium and embryo during pregnancy. This study shows that estradiol (E2)/IGF1 signaling stimulates glycogen synthesis in the uterine epithelium of cows, which could provide glucose when needed. Abstract Glycogen storage in the uterine epithelium peaks near estrus and is a potential source of glucose for the endometrium and embryos. However, the hormonal regulation of glycogen synthesis in the uterine epithelium is poorly understood. Our objective was to evaluate the effect of E2 and insulin-like growth factor 1 (IGF1) on glycogenesis in immortalized bovine uterine epithelial (BUTE) cells. Treatment of BUTE cells with E2 (0.1–10 nM) did not increase glycogen levels. However, treatment of BUTE cells with IGF1 (50 or 100 ng/mL) resulted in a >2-fold increase in glycogen. To determine if the uterine stroma produced IGF1 in response to E2, bovine uterine fibroblasts were treated with E2, which increased IGF1 levels. Immunohistochemistry showed higher levels of IGF1 in the stroma on day 1 than on day 11, which coincides with higher glycogen levels in the uterine epithelium. Western blots revealed that IGF1 treatment increased the levels of phospho-AKT, phospho-GSKβ, hexokinase 1, and glycogen synthase in BUTE cells. Metabolomic (GC-MS) analysis showed that IGF1 increased 3-phosphoglycerate and lactate, potentially indicative of increased flux through glycolysis. We also found higher levels of N-acetyl-glucosamine and protein glycosylation after IGF1 treatment, indicating increased hexosamine biosynthetic pathway activity. In conclusion, IGF1 is produced by uterine fibroblasts due to E2, and IGF1 increases glucose metabolism and glycogenesis in uterine epithelial cells. Glycogen stored in the uterine epithelium due to E2/IGF1 signaling at estrus could provide glucose to the endometrium or be secreted into the uterine lumen as a component of histotroph.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endometrial glucose metabolism during early pregnancy;Reproduction and Fertility;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3