Blastocyst trophectoderm endocytic activation, a marker of adverse developmental programming

Author:

Caetano Laura1,Eckert Judith J2,Johnston David3,Chatelet David S3,Tumbarello David A4,Smyth Neil R1,Ingamells Sue5,Price Anthony5,Fleming Tom P1

Affiliation:

1. 1Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK

2. 2Human Development and Health, Southampton General Hospital, University of Southampton, Southampton, UK

3. 3Biomedical Imaging Unit, Southampton General Hospital, University of Southampton, Southampton, UK

4. 4Biological Sciences, University of Southampton, Southampton, UK

5. 5Wessex Fertility Clinic, Southampton, UK

Abstract

The mouse preimplantation embryo is sensitive to its environment, including maternal dietary protein restriction, which can alter the developmental programme and affect lifetime health. Previously, we have shown maternal low-protein diet (LPD) causes a reduction in blastocyst mTORC1 signalling coinciding with reduced availability of branched-chain amino acids (BCAAs) in surrounding uterine fluid. BCAA deficiency leads to increased endocytosis and lysosome biogenesis in blastocyst trophectoderm (TE), a response to promote compensatory histotrophic nutrition. Here, we first investigated the induction mechanism by individual variation in BCAA deficiency in an in vitro quantitative model of TE responsiveness. We found isoleucine (ILE) deficiency as the most effective activator of TE endocytosis and lysosome biogenesis, with less potent roles for other BCAAs and insulin; cell volume was also influential. TE response to low ILE included upregulation of vesicles comprising megalin receptor and cathepsin-B, and the response was activated from blastocyst formation. Secondly, we identified the transcription factor TFEB as mediating the histotrophic response by translocation from cytoplasm to nucleus during ILE deficiency and in response to mTORC1 inhibition. Lastly, we investigated whether a similar mechanism responsive to maternal nutritional status was found in human blastocysts. Blastocysts from women with high body-mass index, but not the method of fertilisation, revealed stimulated lysosome biogenesis and TFEB nuclear migration. We propose TE lysosomal phenotype as an early biomarker of environmental nutrient stress that may associate with long-term health outcomes.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3