Dysregulation of intracellular pH is a cause of impaired capacitation in Slc22a14-deficient mice

Author:

Ito Momoe1,Unou Masato2,Higuchi Toshiya1,So Shuhei34,Ito Masahiko5,Yogo Keiichiro126

Affiliation:

1. 1Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan

2. 2Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan

3. 3Department of Reproductive and Perinatal Medicine, Hamamatsu University School of Medicine, Shizuoka, Japan

4. 4Tawara IVF Clinic, Shizuoka, Japan

5. 5Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan

6. 6College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan

Abstract

Solute carrier 22a member 14 (SLC22A14) plays a critical role in male infertility in mice. We previously revealed that one of the causes of infertility is impaired capacitation. However, the molecular mechanism remained unclear. Here, we show that the influx of HCO3, a trigger of capacitation, is impaired and intracellular pH (pHi) is decreased in the sperm of Slc22a14 knockout (KO) mice. While intracellular cAMP concentration did not increase during capacitation in Slc22a14 KO spermatozoa, HCO3-dependent soluble adenylate cyclase activity was normal, and the addition of 8-bromo cAMP rescued the decreased protein tyrosine phosphorylation. In addition, the pHi of Slc22a14 KO sperm was lower than that of WT sperm and did not increase after the addition of HCO3. Although its relationship to the regulation of pHi is unknown, transmembrane protein 225, a possible protein phosphatase inhibitor, was found to be decreased in Slc22a14 KO sperm. The decreased in vitro fertilization rate of Slc22a14 KO sperm was partially rescued by an increase in the pHi and the addition of 8-bromo cAMP. These results suggest that SLC22A14 is involved in capacitation through the regulation of HCO3 transport and pHi.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3