Differential RA responsiveness among subsets of mouse late progenitor spermatogonia

Author:

Suzuki Shinnosuke1,McCarrey John R1,Hermann Brian P1

Affiliation:

1. 1Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA

Abstract

Initiation of spermatogonial differentiation in the mouse testis begins with the response to retinoic acid (RA) characterized by activation of KIT and STRA8 expression. In the adult, spermatogonial differentiation is spatiotemporally coordinated by a pulse of RA every 8.6 days that is localized to stages VII–VIII of the seminiferous epithelial cycle. Dogmatically, progenitor spermatogonia that express retinoic acid receptor gamma (RARG) at these stages will differentiate in response to RA, but this has yet to be tested functionally. Previous single-cell RNA-seq data identified phenotypically and functionally distinct subsets of spermatogonial stem cells (SSCs) and progenitor spermatogonia, where late progenitor spermatogonia were defined by expression of RARG and Dppa3. Here, we found late progenitor spermatogonia (RARGhigh KIT−) were further divisible into two subpopulations based on Dppa3 reporter expression (Dppa3-ECFP or Dppa3-EGFP) and were observed across all stages of the seminiferous epithelial cycle. However, nearly all Dppa3+ spermatogonia were differentiating (KIT+) late in the seminiferous epithelial cycle (stages X–XII), while Dppa3− late progenitors remained abundant, suggesting that Dppa3+ and Dppa3− late progenitors differentially responded to RA. Following acute RA treatment (2–4 h), significantly more Dppa3+ late progenitors induced KIT, including at the midpoint of the cycle (stages VI–IX), than Dppa3− late progenitors. Subsequently, single-cell analyses indicated a subset of Dppa3+ late progenitors expressed higher levels of Rxra, which we confirmed by RXRA whole-mount immunostaining. Together, these results indicate RARG alone is insufficient to initiate a spermatogonial response to RA in the adult mouse testis and suggest differential RXRA expression may discriminate responding cells.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3