An essential role for Polycomb Repressive Complex 2 in the mouse ovary

Author:

Prokopuk Lexie12,Jarred Ellen G1,Blücher Rheannon O1,McLaughlin Eileen A345,Stringer Jessica M6,Western Patrick S1ORCID

Affiliation:

1. 1Centre for Reproductive Health, Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, Victoria, Australia

2. 2Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia

3. 3University of Wollongong, New South Wales, Australia

4. 4Priority Research Centre for Reproductive Science, School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia

5. 5Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia

6. 6Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia

Abstract

Polycomb repressive complex 2 (PRC2) catalyses the repressive epigenetic modification of histone 3 lysine 27 tri-methylation (H3K27me3) and functions as a key epigenetic regulator during embryonic development. PRC2 is known to regulate the development of a range of tissues by transcriptional silencing of genes that control cell differentiation, but its roles in female germline and ovarian development remain unknown. Using a mouse model with hypomorphic embryonic ectoderm development (EED) function that reduced H3K27me3 in somatic and germ cells, we found that PRC2 was required for survival, with more than 95% of female animals dying before birth. Although surviving adult EED hypomorphic females appeared morphologically similar to controls and were fertile, Eedhypo/hypo adult ovaries were abnormal, with altered morphology characterised by abnormal follicles. Early Eedhypo/hypo and control fetal ovaries were morphologically similar, and germ cells entered meiosis normally. Immunofluorescent analyses of somatic and germline markers indicated that ovarian development in Eedhypo/hypo ovaries was similar to heterozygous and WT controls. However, TUNEL analyses revealed higher rates of apoptosis in the ovarian surface epithelium, and transcriptional analyses revealed changes in genes regulating epithelial and steroidogenic cell differentiation, possibly foreshadowing the defects observed in adult ovaries of hypomorphic females. While it was possible to analyse early-mid fetal ovarian development, postnatal stages were inaccessible due to the high level of lethality during late fetal stages. Despite this limitation, the data we were able to obtain reveal a novel role for EED in the ovary that is likely to alter ovarian development and ovarian function in adult animals.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3