Maternal exposure to an enriched environment promotes uterine vascular remodeling and prevents embryo loss in mice

Author:

de la Cruz Borthiry Fernanda L12,Schander Julieta A2ORCID,Cella Maximiliano2,Beltrame Jimena S1ORCID,Franchi Ana María2,Ribeiro María L1

Affiliation:

1. 1Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos, UBA-CONICET, Ciudad Autónoma de Buenos Aires CP, Argentina

2. 2Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos, UBA-CONICET, Ciudad Autónoma de Buenos Aires CP, Argentina

Abstract

Implantation-related events are crucial for pregnancy success. In particular, defects in vascular remodeling at the maternal–fetal interface are associated with spontaneous miscarriage and recurrent pregnancy loss. Physical activity and therapies oriented to reduce stress improve pregnancy outcomes. In animal models, environmental stimulation and enrichment are associated with enhanced well-being, cognitive function and stress resilience. Here, we studied whether the exposure of BALB/c mice to an enriched environment (EE) regulates crucial events during early gestation at the maternal–fetal interface. Pregnant BALB/c mice were exposed to the EE that combines non-invasive stimuli from the sensory pathway with voluntary physical activity. The pregnancy rate was evaluated. Implantation sites were investigated microscopically and macroscopically. Vascular adaptation parameters at the maternal–fetal interface were analyzed. We found that exposure to the EE prevented pregnancy loss between gestational days 7 and 15. Also, it increased the diameter of the uterine artery and decreased the wall:lumen ratio of the mesometrial decidual vessels, suggesting that EE exposure promotes vascular remodeling. Moreover, it increased nitric oxide synthase activity and inducible nitric oxide synthase expression, as well as prostaglandin F2a production and endoglin expression in the implantation sites. Exposure of pregnant females to the EE regulates uterine physiology, promoting vascular remodeling during early gestation. These adaptations might contribute to preventing embryo loss. Our results highlight the importance of the maternal environment for pregnancy success. The design of an ‘EE-like’ protocol for humans could be considered as a new non-pharmacologic strategy to prevent implantation failure and recurrent miscarriage.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3