Prenatal corticosterone exposure programs sex-specific adrenal adaptations in mouse offspring

Author:

Cuffe J S M12,Turton E L1,Akison L K1,Bielefeldt-Ohmann H3,Moritz K M1

Affiliation:

1. 1School of Biomedical ScienceThe University of Queensland, St Lucia, Queensland, Australia

2. 2School of Medical ScienceMenzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia

3. 3School of Veterinary ScienceThe University of Queensland, Gatton, Queensland, Australia

Abstract

Maternal stress can impair foetal development and program sex-specific disease outcomes in offspring through the actions of maternally produced glucocorticoids, predominantly corticosterone (Cort) in rodents. We have demonstrated in mice that male but not female offspring prenatally exposed to Cort (33 µg/kg/h for 60 h beginning at E12.5) develop cardiovascular/renal dysfunction at 12 months. At 6 months of age, renal function was normal but male offspring had increased plasma aldosterone concentrations, suggesting that altered adrenal function may precede disease. This study investigated the long-term impact of prenatal exposure to Cort on adrenal growth, morphology and steroidogenic capacity as well as plasma Cort concentrations in offspring at postnatal day 30 (PN30), 6 months and 12 months of age. Prenatal Cort exposure decreased adrenal volume, particularly of the zona fasciculata, in male offspring at PN30 but increased both relative and absolute adrenal weight at 6 months of age. By 12 months of age, male Cort-exposed offspring had reduced absolute adrenal weight in association with increased adrenal plaque deposition (lipogenic pigmentation). Plasma Cort concentrations were elevated in male 6-month offspring but not at other ages. mRNA expression of Mc2r (ACTH receptor) was increased in males at PN30, and Cyp11a1 expression was decreased at 6 and 12 months of age. There were no changes in the adrenals of female Cort-exposed offspring. This study demonstrates that prenatal Cort exposure induces offspring adrenal gland dysfunction in an age- and sex-specific manner, which may contribute to long-term programmed disease in male offspring after maternal stress.

Publisher

Bioscientifica

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3