Targeting PDZ-binding kinase is anti-tumorigenic in novel preclinical models of ACC

Author:

Kar Adwitiya1,Zhang Yu1,Yacob Betelehem W2,Saeed Jordan1,Tompkins Kenneth D1,Bagby Stacey M2,Pitts Todd M2,Somerset Hilary3,Leong Stephen2,Wierman Margaret E14,Kiseljak-Vassiliades Katja14

Affiliation:

1. 1Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA

2. 2Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA

3. 3Department of Pathology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA

4. 4Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA

Abstract

Adrenocortical carcinoma (ACC) is an aggressive orphan malignancy with less than 35% 5-year survival and 75% recurrence. Surgery remains the primary therapy and mitotane, an adrenolytic, is the only FDA-approved drug with wide-range toxicities and poor tolerability. There are no targeted agents available to date. For the last three decades, H295R cell line and its xenograft were the only available preclinical models. We recently developed two new ACC patient-derived xenograft mouse models and corresponding cell lines (CU-ACC1 and CU-ACC2) to advance research in the field. Here, we have utilized these novel models along with H295R cells to establish the mitotic PDZ-binding kinase (PBK) as a promising therapeutic target. PBK is overexpressed in ACC samples and correlates with poor survival. We show that PBK is regulated by FOXM1 and targeting PBK via shRNA decreased cell proliferation, clonogenicity and anchorage-independent growth in ACC cell lines. PBK silencing inhibited pAkt, pp38MAPK and pHistone H3 altering the cell cycle. Therapeutically, targeting PBK with the small-molecule inhibitor HITOPK032 phenocopied PBK-specific modulation of pAkt and pHistone H3, but also induced apoptosis via activation of JNK. Consistent with in vitro findings, treatment of CU-ACC1 PDXs with HITOPK032 significantly reduced tumor growth by 5-fold (P < 0.01). Treated tumor tissues demonstrated increased rates of apoptosis and JNK activation, with decreased pAkt and Histone H3 phosphorylation, consistent with effects observed in ACC cell lines. Together these studies elucidate the mechanism of PBK in ACC tumorigenesis and establish the potential therapeutic potential of HITOPK032 in ACC patients.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3