IGF2 drives formation of ileal neuroendocrine tumors in patients and mice

Author:

Contractor Tanupriya1,Clausen Richard1,Harris Grant R1,Rosenfeld Jeffrey A2,Carpizo Darren R2,Tang Laura3,Harris Chris R124

Affiliation:

1. 1Raymond and Beverly Sackler Foundation, New Brunswick, New Jersey, USA

2. 2Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA

3. 3Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA

4. 4Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA

Abstract

By the strictest of definitions, a genetic driver of tumorigenesis should fulfill two criteria: it should be altered in a high percentage of patient tumors, and it should also be able to cause the same type of tumor to form in mice. No gene that fits either of these criteria has ever been found for ileal neuroendocrine tumors (I-NETs), which in humans are known for an unusual lack of recurrently mutated genes, and which have never been detected in mice. In the following report, we show that I-NETs can be generated by transgenic RT2 mice, which is a classic model for a genetically unrelated disease, pancreatic neuroendocrine tumors (PNETs). The ability of RT2 mice to generate I-NETs depended upon genetic background. I-NETs appeared in a B6AF1 genetic background, but not in a B6 background nor even in an AB6F1 background. AB6F1 and B6AF1 have identical nuclear DNA but can potentially express different allelic forms of imprinted genes. This led us to test human I-NETs for loss of imprinting, and we discovered that the IGF2 gene showed loss of imprinting and increased expression in the I-NETs of 57% of patients. By increasing IGF2 activity genetically, I-NETs could be produced by RT2 mice in a B6 genetic background, which otherwise never developed I-NETs. The facts that IGF2 is altered in a high percentage of patients with I-NETs and that I-NETs can form in mice that have elevated IGF2 activity, define IGF2 as the first genetic driver of ileal neuroendocrine tumorigenesis.

Publisher

Bioscientifica

Subject

Cancer Research,Endocrinology,Oncology,Endocrinology, Diabetes and Metabolism

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3