Thyroid hormone induced angiogenesis through the integrin αvβ3/protein kinase D/histone deacetylase 5 signaling pathway

Author:

Liu Xin,Zheng Nan,Shi Ya-Nan,Yuan Jihong,Li Lanying

Abstract

Thyroid hormone is reported to induce angiogenesis, which is mediated by the membrane receptor integrin αvβ3, but the precise signaling pathway is still not very clear. Recently, studies have shown that protein kinase D (PKD) regulates the recycling of integrin αvβ3, which is required for cell migration. Moreover, phosphorylated PKD stimulates histone deacetylase 5 (HDAC5) phosphorylation and nuclear export in endothelial cells. As a potent pro-angiogenic growth factor, basic fibroblast growth factor (bFGF (FGF2)) is a downstream target gene of HDAC5. Therefore, we examined the hypothesis that a novel signaling pathway through integrin αvβ3/PKD/HDAC5 might contribute to thyroxine (T4)-induced angiogenesis. We selected human umbilical vein endothelial cells (HUVECs) for treatment. Angiogenesis was assessed using wound-healing and tubulogenesis assays. Signaling molecules, including phosphorylated PKD and HDAC5, were measured by western blotting. bFGF mRNA was analyzed by real-time PCR. Our results showed that T4 (100 nmol/l) stimulated the migration and formation of tube-like structures of HUVECs, whereas tetraiodothyroacetic acid (Tetrac, 100 nmol/l) inhibited T4-induced cell migration. Importantly, T4 promoted the phosphorylation of PKD and HDAC5. These effects were inhibited respectively by Tetrac, PKC inhibitor (2.5 μmol/l) and PKD siRNA. Meanwhile, T4 could promote the cytoplasmic accumulation of phosphorylated HDAC5 in HUVECs. In addition, bFGF mRNA expression in HUVECs significantly increased within 2 h of T4 treatment, but was decreased by Tetrac. Our findings indicate that T4 increases the expression of bFGF mRNA via the integrin αvβ3/PKD/HDAC5 signaling pathway, which plays an important role in angiogenesis.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3