Differential regulation of pro-inflammatory cytokine signalling by protein tyrosine phosphatases in pancreatic β-cells

Author:

Stanley William J12,Trivedi Prerak M12,Sutherland Andrew P1,Thomas Helen E12,Gurzov Esteban N123

Affiliation:

1. 1St. Vincent’s Institute of Medical Research, Melbourne, Australia

2. 2Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia

3. 3ULB Center for Diabetes Research, Universite Libre de Bruxelles (ULB), Brussels, Belgium

Abstract

Type 1 diabetes (T1D) is characterized by the destruction of insulin-producing β-cells by immune cells in the pancreas. Pro-inflammatory including TNF-α, IFN-γ and IL-1β are released in the islet during the autoimmune assault and signal in β-cells through phosphorylation cascades, resulting in pro-apoptotic gene expression and eventually β-cell death. Protein tyrosine phosphatases (PTPs) are a family of enzymes that regulate phosphorylative signalling and are associated with the development of T1D. Here, we observed expression of PTPN6 and PTPN1 in human islets and islets from non-obese diabetic (NOD) mice. To clarify the role of these PTPs in β-cells/islets, we took advantage of CRISPR/Cas9 technology and pharmacological approaches to inactivate both proteins. We identify PTPN6 as a negative regulator of TNF-α-induced β-cell death, through JNK-dependent BCL-2 protein degradation. In contrast, PTPN1 acts as a positive regulator of IFN-γ-induced STAT1-dependent gene expression, which enhanced autoimmune destruction of β-cells. Importantly, PTPN1 inactivation by pharmacological modulation protects β-cells and primary mouse islets from cytokine-mediated cell death. Thus, our data point to a non-redundant effect of PTP regulation of cytokine signalling in β-cells in autoimmune diabetes.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Beta cell stress and type 1 diabetes;Stress: Immunology and Inflammation;2024

2. Applications of Genome-Editing Technologies for Type 1 Diabetes;International Journal of Molecular Sciences;2023-12-26

3. Insulin-Binding Peptide Probes Provide a Novel Strategy for Pancreatic β-Cell Imaging;Molecular Pharmaceutics;2021-10-15

4. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes;Trends in Endocrinology & Metabolism;2020-12

5. IL-17F induces inflammation, dysfunction and cell death in mouse islets;Scientific Reports;2020-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3