Regulation of adrenal and ovarian steroidogenesis by miR-132

Author:

Hu Zhigang12,Shen Wen-Jun12,Kraemer Fredric B12,Azhar Salman12

Affiliation:

1. 1Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA

2. 2Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, USA

Abstract

miR-132 is hormonally regulated in steroidogenic cells of the adrenal gland, ovary and testis. Here, we examined the potential role of miR-132 in the control of steroidogenesis. Transfection of Y1 adrenal cells with miR-132 increased mRNAs of 3β-HSD and 20α-HSD enzymes, which catalyze the sequential conversion of pregnenolone to progesterone to biologically inactive 20α-hydroxyprogesterone (20α-OHP). Overexpression of miR-132 reduced MeCP2 and StAR protein expression, basal progestin (progesterone and 20α-OHP) production, but enhanced their production in response to cAMP stimulation. Use of [3H] pregnenolone and free-diffusible 22(R)-hydroxycholesterol further confirmed that miR-132 promotes the production of 20α-OHP by upregulating 3β-HSD and 20α-HSD. Evidence is also presented that StAR is a direct target of miR-132. Transient transfection of Y1 cells with miR-132 demonstrated that miR-132 induction of 3β-HSD and 20α-HSD was accompanied by significant suppression of one of its target gene products, MeCP2. In contrast, co-expression of miR-132 plus MeCP2 protein partially blocked the ability of miR-132 to upregulate the expression and function of 3β-HSD and 20α-HSD. Moreover, suppression of MeCP2 protein with siRNA resulted in increased expression of 3β-HSD and 20α-HSD, further demonstrating that miR-132 induces the expression of these two enzymes via inhibition of MeCP2. Likewise, overexpression of miR-132 increased 20α-OHP production with and without HDL loading, while knockdown of miR-132 resulted in a significant decrease of 20α-OHP production by granulosa cells. In conclusion, our data suggest that miR-132 attenuates steroidogenesis by repressing StAR expression and inducing 20α-HSD via inhibition of MeCP2 to generate a biologically inactive 20α-OHP.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Reference66 articles.

1. The functions of animal microRNAs

2. Phosphorylation of Steroidogenic Acute Regulatory Protein (StAR) Modulates Its Steroidogenic Activity

3. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroiodgenic cell model;Azhar;Journal of Lipid Research,1998

4. Hormonal regulation of adrenal microvillar channel formation;Azhar;Journal of Lipid Research,2002

5. MicroRNAs: Target Recognition and Regulatory Functions

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3