miR-30e targets GLIPR-2 to modulate diabetic nephropathy: in vitro and in vivo experiments

Author:

Zhao Dong1,Jia Jinhua2,Shao Hong1

Affiliation:

1. 1Department of Nephrology, Jining NO.1 People’s Hospital, Jining, Shandong, People’s Republic of China

2. 2Department of Nephrology, Ankang Hospital of Traditional Chinese Medicine, Ankang, Shaanxi, People’s Republic of China

Abstract

The objectives of this study are to investigate the effect of miR-30e targeting GLIPR-2 on the pathological mechanism of DN. The renal tissues of db/db and db/m mice at different age of weeks were stained with PAS. qRT-PCR was applied to detect the expression of miR-30e and GLIPR-2, not only in the renal tissues of mice but also in the renal tubular epithelial cells (RTECs). By luciferase reporter gene assays, we found the 3′-UTR of the GLIPR-2 mRNA as a direct target of miR-30e. The RTECs cultured in high glucose were divided into blank control, NC, miR-30e mimics, miR-30e inhibitors, miR-30e inhibitor + si-GLIPR-2 and si-GLIPR-2 groups. MTT and flow cytometry were utilized to measure the proliferation and apoptosis of RTECs, while qRT-PCR and Western blot to detect the expression of GLIPR-2- and EMT-related factors. The following results were obtained: In the renal tissues of over 8-week-old db/db mice and the RTECs cultured for 6 h in high glucose, miR-30e was downexpressed while GLIPR-2 was upregulated in a time-dependent manner. Besides, overexpression of miR-30e and si-GLIPR-2 can not only greatly improve the proliferation of RTECs cultured in high glucose, but also downregulate the apoptosis rate of RTECs and the expressions of GLIPR-2, vimentin, α-SMA, Col-I and FN and upregulate E-cadherin. Moreover, si-GLIPR-2 can reverse the proliferation reduction, GLIPR-2 and EMT occurrence caused by the downexpression of miR-30e in RTECs. In conclusion, miR-30e is downregulated in DN, and the overexpression of miR-30e can inhibit GLIPR-2, promote the proliferation of RTECs and inhibit EMT, ultimately avoid leading to renal fibrosis in DN.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Reference44 articles.

1. The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro;Baxter;Matrix Biology,2007

2. Mouse Models of Diabetic Nephropathy

3. Abnormalities in signaling pathways in diabetic nephropathy;Brosius;Expert Review of Endocrinology and Metabolism,2010

4. Serum tumor necrosis factor associated with malaria in patients in the Solomon Islands

5. Pain management standards in the eighth edition of the guide for the care and use of laboratory animals;Carbone;Journal of the American Association for Laboratory Animal Science,2012

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3