Chronic stress alters adrenal clock function in a sexually dimorphic manner

Author:

Stagl Matthew1,Bozsik Mary1,Karow Christopher1,Wertz David1,Kloehn Ian1,Pillai Savin1,Gasser Paul J1,Gilmartin Marieke R1,Evans Jennifer A1

Affiliation:

1. Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA

Abstract

Glucocorticoid production is gated at the molecular level by the circadian clock in the adrenal gland. Stress influences daily rhythms in behavior and physiology, but it remains unclear how stress affects the function of the adrenal clock itself. Here, we examine the influence of stress on adrenal clock function by tracking PERIOD2::LUCIFERASE (PER2::LUC) rhythmsin vitro. Relative to non-stressed controls, adrenals from stressed mice displayed marked changes in PER2::LUC rhythms. Interestingly, the effect of stress on adrenal rhythms varied by sex and the type of stress experiencedin vivo. To investigate the basis of sex differences in the adrenal response to stress, we next stimulated male and female adrenalsin vitrowith adrenocorticotropic hormone (ACTH). ACTH shifted phase and increased amplitude of adrenal PER2::LUC rhythms. Both phase and amplitude responses were larger in female adrenals than in male adrenals, an observation consistent with previously described sex differences in the physiological response to stress. Lastly, we reversed the sex difference in adrenal clock function using stress and sex hormone manipulations to test its role in driving adrenal responses to ACTH. We find that adrenal responsiveness to ACTH is inversely proportional to the amplitude of adrenal PER2::LUC rhythms. This suggests that larger ACTH responses from female adrenals may be driven by their lower amplitude molecular rhythms. Collectively, these results indicate a reciprocal relationship between stress and the adrenal clock, with stress influencing adrenal clock function and the state of the adrenal clock gating the response to stress in a sexually dimorphic manner.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3