Author:
Baumann Claudia,Olson Mark,Wang Kai,Fazleabas Asgerally,De La Fuente Rabindranath
Abstract
Endometriosis is associated with infertility and debilitating chronic pain. Abnormal epigenetic modifications in the human endometrium have recently been implicated in the pathogenesis of this condition. However, whether an altered epigenetic landscape contributes to pathological changes in the ovary is unknown. Using an established baboon endometriosis model, early-, and late-stage epigenetic changes in the ovary were investigated. Transcript profiling of key chromatin-modifying enzymes using pathway-focused PCR arrays on ovarian tissue from healthy control animals and at 3 and 15 months of endometriosis revealed dramatic changes in gene expression in a disease duration-dependent manner. Ingenuity Pathway Analysis indicated that transcripts for chromatin-remodeling enzymes associated with reproductive system disease and cancer development were abnormally regulated, most prominently the arginine methyltransferases CARM1, PRMT2, and PRMT8. Downregulation of CARM1 protein expression was also detected in the ovary, fully-grown oocytes and eutopic endometrium following 15 months of endometriosis. Sodium bisulfite sequencing revealed DNA hypermethylation within the PRMT8 promoter, suggesting that deregulated CpG methylation may play a role in transcriptional repression of this gene. These results demonstrate that endometriosis is associated with changes of epigenetic profiles in the primate ovary and suggest that arginine methyltransferases play a prominent role in mediating the ovarian response to endometriosis. Owing to the critical role of CARM1 in nuclear receptor-mediated transcription and maintenance of pluripotency in the cleavage stage embryo, our results suggest that epigenetic alterations in the ovary may have functional consequences for oocyte quality and the etiology of infertility associated with endometriosis.
Subject
Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献