Author:
Tsukada Takehiro,Azuma Morio,Horiguchi Kotaro,Fujiwara Ken,Kouki Tom,Kikuchi Motoshi,Yashiro Takashi
Abstract
The anterior pituitary gland comprises five types of endocrine cells plus non-endocrine cells including folliculostellate cells, endothelial cells, and capillary mural cells (pericytes). In addition to being controlled by the hypothalamic–pituitary–target organ axis, the functions of these cells are likely regulated by local cell and extracellular matrix (ECM) interactions. However, these complex interactions are not fully understood. We investigated folliculostellate cell-mediated cell-to-cell interaction. Using S100β-GFP transgenic rats, which express GFP in folliculostellate cells, we designed a three-dimensional cell culture to examine the effects of folliculostellate cells. Interestingly, removal of folliculostellate cells reduced collagen synthesis (Col1a1andCol3a1). Because pericytes are important collagen-producing cells in the gland, we stained for desmin (a pericyte marker). Removal of folliculostellate cells resulted in fewer desmin-positive pericytes and less desmin mRNA. We then attempted to identify the factor mediating folliculostellate cell–pericyte interaction. RT-PCR andin situhybridization revealed that the important profibrotic factor transforming growth factor beta-2 (TGFβ2) was specifically expressed in folliculostellate cells and that TGFβ receptor II was expressed in pericytes, endothelial cells, and parenchymal cells. Immunocytochemistry showed that TGFβ2 induced SMAD2 nuclear translocation in pericytes. TGFβ2 increased collagen synthesis in a dose-dependent manner. This action was completely blocked by TGFβ receptor I inhibitor (SB431542). Diminished collagen synthesis in folliculostellate cell-deficient cell aggregates was partially recovered by TGFβ2. TGFβ2-mediated folliculostellate cell–pericyte interaction appears to be essential for collagen synthesis in rat anterior pituitary. This finding sheds new light on local cell–ECM interactions in the gland.
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献