Dystrobrevin alpha gene is a direct target of the vitamin D receptor in muscle

Author:

Tsoumpra Maria K1,Sawatsubashi Shun2,Imamura Michihiro1,Fukumoto Seiji2,Takeda Shin’ichi1,Matsumoto Toshio2,Aoki Yoshitsugu1

Affiliation:

1. 1Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo, Japan

2. 2Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan

Abstract

The biologically active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (VD3), exerts its tissue-specific actions through binding to its intracellular vitamin D receptor (VDR) which functions as a heterodimer with retinoid X receptor (RXR) to recognize vitamin D response elements (VDRE) and activate target genes. Upregulation of VDR in murine skeletal muscle cells occurs concomitantly with transcriptional regulation of key myogenic factors upon VD3 administration, reinforcing the notion that VD3 exerts beneficial effects on muscle. Herein we elucidated the regulatory role of VD3/VDR axis on the expression of dystrobrevin alpha (DTNA), a member of dystrophin-associated protein complex (DAPC). In C2C12 cells, Dtna and VDR gene and protein expression were upregulated by 1–50 nM of VD3 during all stages of myogenic differentiation. In the dystrophic-derived H2K-mdx52 cells, upregulation of DTNA by VD3 occurred upon co-transfection of VDR and RXR expression vectors. Silencing of MyoD1, an E-box binding myogenic transcription factor, did not alter the VD3-mediated Dtna induction, but Vdr silencing abolished this effect. We also demonstrated that VD3 administration enhanced the muscle-specific Dtna promoter activity in presence of VDR/RXR only. Through site-directed mutagenesis and chromatin immunoprecipitation assays, we have validated a VDRE site in Dtna promoter in myogenic cells. We have thus proved that the positive regulation of Dtna by VD3 observed during in vitro murine myogenic differentiation is VDR mediated and specific. The current study reveals a novel mechanism of VDR-mediated regulation for Dtna, which may be positively explored in treatments aiming to stabilize the DAPC in musculoskeletal diseases.

Publisher

Bioscientifica

Subject

Endocrinology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3