Bone morphogenetic protein 6 promotes FSH receptor and anti-Müllerian hormone mRNA expression in granulosa cells from hen prehierarchal follicles

Author:

Ocón-Grove O M,Poole D H,Johnson A L

Abstract

A growing body of literature provides evidence of a prominent role for bone morphogenetic proteins (BMPs) in regulating various stages of ovarian follicle development. Several actions for BMP6 have been previously reported in the hen ovary, yet only within postselection (preovulatory) follicles. The initial hypothesis tested herein is that BMP6 increases FSH receptor (FSHR) mRNA expression within the granulosa layer of prehierarchal (6–8 mm) follicles (6–8 GC). BMP6 mRNA is expressed at higher levels within undifferentiated (1–8 mm) follicles compared with selected (≥9 mm) follicles. Recombinant human (rh) BMP6 initiates SMAD1, 5, 8 signaling in cultured 6–8 GC and promotes FSHR mRNA expression in a dose-related fashion. In addition, a 21 h preculture with rhBMP6 followed by a 3 h challenge with FSH increases cAMP accumulation, STAR (StAR) expression, and progesterone production. Interestingly, rhBMP6 also increases expression of anti-Müllerian hormone (AMH) mRNA in cultured 6–8 GC. This related BMP family member has previously been implicated in negatively regulating FSH responsiveness during follicle development. Considering these data, we propose that among the paracrine and/or autocrine actions of BMP6 within prehierarchal follicles is the maintenance of both FSHR and AMH mRNA expression. We predict that before follicle selection, one action of AMH within granulosa cells from 6 to 8 mm follicles is to help suppress FSHR signaling and prevent premature granulosa cell differentiation. At the time of selection, we speculate that the yet undefined signal directly responsible for selection initiates FSH responsiveness. As a result, FSH signaling suppresses AMH expression and initiates the differentiation of granulosa within the selected follicle.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3