Foetal fibroblasts introduced to cleaving mouse embryos contribute to full-term development

Author:

Piliszek Anna,Modliński Jacek A,Pyśniak Kazimiera,Karasiewicz Jolanta

Abstract

Foetal fibroblasts (FFs) labelled with vital fluorescent dye were microsurgically introduced into eight-cell mouse embryos, three cells to each embryo. FFs were first identified in the inner cell mass (ICM) in about one-third of embryos, whereas in three quarters of embryos FFs were located among trophoblast cells. Some elimination of FFs from trophoblast occurred later on. Eventually, in blastocysts’ outgrowths, an equally high contribution from FFs progeny (60%) was found in both ICM and trophoblast. Three days after manipulation, FFs resumed proliferationin vitro. More than three FFs were found in 46.2% of embryos on day 4. On the 7th dayin vitroin 70% of embryos more than 12 FFs were found, proving at least three cell divisions.To study postimplantation development, the embryos with FFs were transferred to pseudopregnant recipients a day after manipulation. After implantation, FFs were identified by electrophoresis for isozymes of glucose phosphate isomerase (GPI). A single 11-day embryo delayed to day 8 proved chimeric by expressing both donor isozyme GPI-1B and recipient GPI-1A. Similar chimerism was found in the extraembryonic lineage of 11% of embryos by day 12. Starting from day 11 onwards, in 32% of normal embryos and in 57% of foetal membranes, hybrid GPI-1AB isozyme, as well as recipient isozyme, was present. Hybrid GPI-1AB can only be produced in hybrid cells derived by cell fusion, therefore, we suggest that during postimplantation development, FFs are rescued by fusion with recipient cells. In the mice born, hybrid isozyme was found in several tissues, including brain, lung, gut and kidney.We conclude that somatic cells (FFs) can proliferate in earlyembryonic environment until early postimplantation stages. Foetuses and the mice born are chimeras between recipient cells and hybrid cells with contributions from the donor FFs. Transdifferentiation as opposed to reprogramming by cell fusion can be considered as underlying cellular processes in these chimeras.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3