Cloning of equine prostaglandin dehydrogenase and its gonadotropin-dependent regulation in theca and mural granulosa cells of equine preovulatory follicles during the ovulatory process

Author:

Sayasith Khampoune,Bouchard Nadine,Doré Monique,Sirois Jean

Abstract

The mammalian ovulatory process is accompanied by a gonadotropin-dependent increase in follicular levels of prostaglandin E2 (PGE2) and PGF2α, which are metabolized by 15-hydroxy prostaglandin dehydrogenase (PGDH). Little is known about ovarian PGDH regulation in non-primate species. The objectives of this study were to characterize the structure of equine PGDH and its regulation in follicles during human chorionic gonadotropin (hCG)-induced ovulation. The full-length equine PGDH was obtained by RT-PCR, 5′- and 3′-rapid amplification of cDNA ends (RACE). Its open reading frame encodes a 266-amino acid protein that is 72–95% homologous to other species. Semi-quantitative RT-PCR/Southern blot were used to study PGDH regulation in follicles isolated 0–39 h post-hCG. Results showed that PGDH mRNA expression was low in follicles obtained at 0 h, increased at 12 and 24 h (P< 0.05), and decreased at 36-h post-hCG. This induction of expression was biphasic, with elevated abundance of transcripts at 12 and 33 h post-hCG (P< 0.05) in mural granulosa and theca cells. Immunohistochemistry and immunoblotting confirmed regulated expression of PGHD protein in both cell types of preovulatory follicles after hCG. High levels of PGDH mRNA were observed in corpus luteum and other non-ovarian tissues tested, except kidney, muscle, brain, and heart. Thus, this study is the first to report the gonadotropin-dependent regulation of PGDH during ovulation in a non-primate species. PGDH induction was biphasic in theca and mural granulosa cells differing from primates in which this induction was monophasic and limited to granulosa cells, suggesting species-specific differences in follicular control of PGDH expression during ovulation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3