Interactive effects of granulosa cell apoptosis, follicle size, cumulus–oocyte complex morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system

Author:

Han Zheng-Bin,Lan Guo-Cheng,Wu Yan-Guang,Han Dong,Feng Wei-Guo,Wang Jun-Zuo,Tan Jing-He

Abstract

Using a well-in-drop (WID) oocyte/embryo culture system that allows identification of follicular origin, we have investigated the effects of granulosa cells (GCs) apoptosis, follicle size, cumulus–oocyte complexes (COCs) morphology, and cumulus expansion on the developmental competence of goat oocytes matured and cultured individually following parthenogenetic activation. The WID system supported oocyte maturation and embryo development to a level similar to the conventional group system. The majority of goat oocytes acquired competence for development up to the 8–16 cell stage in follicles larger than 2 mm, but did not gain the ability to form morula/blastocyst (M/Bs) until follicles larger than 3 mm in diameter. The extent of atresia affected M/Bs formation. This effect varied according to the follicle size. Cumulus expansion increased with follicle size and decreased with increasing incidence of GCs apoptosis. Oocyte developmental potential was also correlated with cumulus expansion. Regardless of the degree of follicle atresia, 73–84% of the floating cells in the follicular fluid (FF) underwent apoptosis. Correlation between floating cell density in FF and oocyte developmental potency suggests the possibility to use the floating cell density as a simple and non-invasive marker for oocyte quality. It is concluded that the developmental potential of an oocyte is determined by multifactor interactions, and multiple factors must be considered together to accurately predict the quality of an oocyte.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3