Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte

Author:

Sturmey R G,O’Toole P J,Leese H J

Abstract

The role of endogenous lipid in the provision of energy duringin vitromaturation of immature porcine oocytes has been studied. Fluorescence resonance energy transfer (FRET) acceptor bleaching methods have been used to examine mitochondrial:lipid droplet co-localisation in live oocytes. FRET experiments demonstrate whether organelles are within the FRET-distance (i.e. 6–10 nm), thus showing true association on a molecular scale. Immature andin vitro-matured porcine oocytes were stained with Mitotracker Green (MTG; mitochondria) and Nile Red (NR; lipid droplets). The data indicated sufficient overlap between MTG emission and NR excitation to support a FRET reaction and that mitochondria and lipid droplets were sufficiently co-localised for a FRET reaction to occur. When NR-stained lipid droplets were specifically bleached, a significant increase in the MTG signal in stained mitochondria was observed (FRET efficiency,E=22.2 ± 3.18%). These results strongly suggest a metabolic role for lipid metabolism during oocyte maturation. This conclusion was reinforced by the use of inhibitors of fatty acid β-oxidation, methyl palmoxirate or mercaptoacetate, exposure to which during oocyte maturation led to developmental failure post-fertilisation. These data provide strong evidence that MTG and NR can act as a FRET pair and that in porcine oocytes, mitochondria and lipid droplets lie within 6–10 nm of each other, indicating association on a molecular scale. The findings also suggest that endogenous triglycerides play an important role in energy metabolism during porcinein vitromaturation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3