Single-cell RNA sequencing in silent corticotroph tumors confirms impaired POMC processing and provides new insights into their invasive behavior

Author:

Zhang Dongyun1,Hugo Willy1,Bergsneider Marvin2,Wang Marilene B3,Kim Won2,Vinters Harry V4,Heaney Anthony P12ORCID

Affiliation:

1. Department of Medicine, David Geffen School of Medicine, University of California , Los Angeles, California, USA

2. Department of Neurosurgery, David Geffen School of Medicine, University of California , Los Angeles, California, USA

3. Department of Head and Neck Surgery, David Geffen School of Medicine, University of California , Los Angeles, California, USA

4. Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California , Los Angeles, California, USA

Abstract

Abstract Objective Provide insights into the defective POMC processing and invasive behavior in silent pituitary corticotroph tumors. Design and methods Single-cell RNAseq was used to compare the cellular makeup and transcriptome of silent and active corticotroph tumors. Results A series of transcripts related to hormone processing peptidases and genes involved in the structural organization of secretory vesicles were reduced in silent compared to active corticotroph tumors. Most relevant to their invasive behavior, silent corticotroph tumors exhibited several features of epithelial-to-mesenchymal transition, with increased expression of mesenchymal genes along with the loss of transcripts that regulate hormonal biogenesis and secretion. Silent corticotroph tumor vascular smooth muscle cell and pericyte stromal cell populations also exhibited plasticity in their mesenchymal features. Conclusions Our findings provide novel insights into the mechanisms of impaired POMC processing and invasion in silent corticotroph tumors and suggest that a common transcriptional reprogramming mechanism simultaneously impairs POMC processing and activates tumor invasion.

Publisher

Oxford University Press (OUP)

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3