Low female birth weight and advanced maternal age programme alterations in next-generation blastocyst development

Author:

Master Jordanna S,Thouas George A,Harvey Alexandra J,Sheedy John R,Hannan Natalie J,Gardner David K,Wlodek Mary E

Abstract

Low birth weight is associated with an increased risk for adult disease development with recent studies highlighting transmission to subsequent generations. However, the mechanisms and timing of programming of disease transmission to the next generation remain unknown. The aim of this study was to examine the effects of low birth weight and advanced maternal age on second-generation preimplantation blastocysts. Uteroplacental insufficiency or sham surgery was performed in late-gestation WKY pregnant rats, giving rise to first-generation (F1) restricted (born small) and control offspring respectively. F1 control and restricted females, at 4 or 12 months of age, were naturally mated with normal males. Second-generation (F2) blastocysts from restricted females displayed reduced expression of genes related to growth compared with F2 control (P<0.05). Following 24 h culture, F2 restricted blastocysts had accelerated development, with increased total cell number, a result of increased trophectoderm cells compared with control (P<0.05). There were alterations in carbohydrate and serine utilisation in F2 restricted blastocysts and F2 restricted outgrowths from 4-month-old females respectively (P<0.05). F2 blastocysts from aged restricted females were developmentally delayed at retrieval, with reduced total cell number attributable to reduced trophectoderm number with changes in carbohydrate utilisation (P<0.05). Advanced maternal age resulted in alterations in a number of amino acids in media obtained from F2 blastocyst outgrowths (P<0.05). These findings demonstrate that growth restriction and advanced maternal age can alter F2 preimplantation embryo physiology and the subsequent offspring growth.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3