Author:
Petersen Tonny Studsgaard,Stahlhut Martin,Andersen Claus Yding
Abstract
Phosphodiesterases (PDEs) are important regulators of the intracellular cAMP concentration, which is a central second messenger that affects a multitude of intracellular functions. In the ovaries, cAMP exerts diverse functions, including regulation of ovulation and it has been suggested that augmented cAMP levels stimulate primordial follicle growth. The present study examined the gene expression, enzyme activity and immunolocalization of the different cAMP hydrolysing PDEs families in the rat ovary. Further, the effect of PDE4 inhibition on primordial follicle activation in cultured neonatal rat ovaries was also evaluated. We found varied expression of all eight families in the ovary with Pde7b and Pde8a having the highest expression each accounting for more than 20% of the total PDE mRNA. PDE4 accounted for 15–26% of the total PDE activity. Immunoreactive PDE11A was found in the oocytes and PDE2A in the corpora lutea. Incubating neonatal rat ovaries with PDE4 inhibitors did not increase primordial follicle activation or change the expression of the developing follicle markers Gdf9, Amh, Inha, the proliferation marker Mki67 or the primordial follicle marker Tmeff2. In addition, the cAMP analogue 8-bromo-cAMP did not increase AKT1 or FOXO3A phosphorylation associated with follicle activation or increase the expression of Kitlg known to be associated with follicle differentiation but did increase the Tmeff2, Mki67 and Inha expression in a dose-dependent manner. In conclusion, this study shows that both Pde7b and Pde8a are highly expressed in the rodent ovary and that PDE4 inhibition does not cause an increase in primordial follicle activation.
Subject
Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献