USP8/UBPy-regulated sorting and the development of sperm acrosome: the recruitment of MET

Author:

Berruti Giovanna,Paiardi Chiara

Abstract

The acrosome is a peculiar vacuole that at fertilization undergoes the acrosome reaction (AR), an event unique in the sperm life. Contents released promote sperm penetration through oocyte's investments; membranous components are involved in sperm–egg interaction/fusion. Therefore, both constituents play a role in fertilization. The biogenesis of this vacuole, however, has not been clarified yet; recently, it has been proposed as a novel lysosome-related organelle (LRO). Our research focuses on the involvement of the endosomal pathway in acrosomogenesis starting from the early phases. The trafficking sorted by USP8/UBPy, an endosomal regulator recently described as a compelling candidate for male fertility gene, was investigated in comparison to that of SP56, a marker of the biosynthetic pathway. Mouse spermatids were double/triple immunolabeled and examined by confocal microscopy. The contribution of the vesicular traffic assisted by the cortical microtubule array was also evaluated in nocodazole-treated spermatids. USP8/UBPy-sorted cargo contributes early to acrosomogenesis and its trafficking is microtubule mediated. It was identified, through co-immunoprecipitation/co-immunolocalization assays, that the membrane receptor MET, described herein for the first time in spermatids, as an USP8/UBPy-target substrate is delivered to the acrosome. MET and USP8/UBPy still colocalize in epididymal spermatozoa. Following the AR, MET and USP8/UBPy show a distinct fate. MET, in particular, translocates at the PAS, the post acrosomal segment known to harbor sperm-borne factors involved in oocyte activation. Overall, our results support the concept of the acrosome as a LRO and provide evidence for the identification of MET as a tyrosine kinase receptor that may play a role in fertilization.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3