Combined albumin and bicarbonate induces head-to-head sperm agglutination which physically prevents equine sperm–oviduct binding

Author:

Leemans Bart,Gadella Bart M,Stout Tom A E,Sostaric Edita,Schauwer Catharina De,Nelis Hilde,Hoogewijs Maarten,Van Soom Ann

Abstract

In many species, sperm binding to oviduct epithelium is believed to be an essential step in generating a highly fertile capacitated sperm population primed for fertilization. In several mammalian species, this interaction is based on carbohydrate-lectin recognition.d-galactose has previously been characterized as a key molecule that facilitates sperm–oviduct binding in the horse. We used oviduct explant and oviduct apical plasma membrane (APM) assays to investigate the effects of various carbohydrates; glycosaminoglycans; lectins; S-S reductants; and the capacitating factors albumin, Ca2+and HCO3on sperm–oviduct binding in the horse. Carbohydrate-specific lectin staining indicated thatN-acetylgalactosamine,N-acetylneuraminic acid (sialic acid) andd-mannose ord-glucose were the most abundant carbohydrates on equine oviduct epithelia, whereasd-galactose moieties were not detected. However, in a competitive binding assay, sperm–oviduct binding density was not influenced by any tested carbohydrates, glycosaminoglycans, lectins ord-penicillamine, nor did the glycosaminoglycans induce sperm tail-associated protein tyrosine phosphorylation. Furthermore,N-glycosidase F (PNGase) pretreatment of oviduct explants and APM did not alter sperm–oviduct binding density. By contrast, a combination of the sperm-capacitating factors albumin and HCO3severely reduced (>10-fold) equine sperm–oviduct binding density by inducing rapid head-to-head agglutination, both of which events were independent of Ca2+and an elevated pH (7.9). Conversely, neither albumin and HCO3nor any other capacitating factor could induce release of oviduct-bound sperm. In conclusion, a combination of albumin and HCO3markedly induced sperm head-to-head agglutination which physically prevented stallion sperm to bind to oviduct epithelium.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3