Reproductive performance of male mice after hypothalamic ghrelin administration

Author:

Poretti María Belén,Frautschi Camila,Luque Eugenia,Bianconi Santiago,Martini Ana Carolina,Stutz Graciela,Vincenti Laura,Santillán Maria Emilia,Ponzio Marina,Schiöth Helgi B,Fiol de Cuneo Marta,Carlini Valeria Paola

Abstract

It has been demonstrated that food intake and reproductive physiology are both simultaneously modulated to optimize reproductive success under fluctuating metabolic conditions. Ghrelin (GHRL) is an orexigenic peptide identified as the endogenous ligand of the growth hormone secretagogue receptor that is being investigated for its potential role on reproduction. Considering that data available so far are still limited and characterization of GHRL action mechanism on the reproductive system has not been fully elucidated, we studied the participation of hypothalamus in GHRL effects on sperm functional activity, plasma levels of gonadotropins and histological morphology in mice testes after hypothalamic infusion of 0.3 or 3.0 nmol/day GHRL or artificial cerebrospinal fluid (ACSF) at different treatment periods. We found that GHRL 3.0 nmol/day administration for 42 days significantly reduced sperm concentration (GHRL 3.0 nmol/day = 14.05 ± 2.44 × 106/mL vs ACSF = 20.33 ± 1.35 × 106/mL,P < 0.05) and motility (GHRL 3.0 nmol/day = 59.40 ± 4.20% vs ACSF = 75.80 ± 1.40%,P < 0.05). In addition, histological studies showed a significant decrease percentage of spermatogonia (GHRL 3.0 nmol/day = 6.76 ± 0.68% vs ACSF = 9.56 ± 0.41%,P < 0.05) and sperm (GHRL 3.0 nmol/day = 24.24 ± 1.92% vs ACSF = 31.20 ± 3.06%,P < 0.05). These results were associated with a significant reduction in luteinizing hormone and testosterone plasma levels (P < 0.05). As GHRL is an orexigenic peptide, body weight and food intake were measured. Results showed that GHRL increases both parameters; however, the effect did not last beyond the first week of treatment. Results presented in this work confirm that central GHRL administration impairs spermatogenesis and suggest that this effect is mediated by inhibition of hypothalamic–pituitary–gonadal axis.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3