Sphingolipid synthesis and role in uterine epithelia proliferation

Author:

Cerbón Jorge,Baranda-Avila Noemi,Falcón-Muñoz Alejandro,Camacho-Arroyo Ignacio,Cerbón Marco

Abstract

Sphingolipids are involved in the regulation of cell proliferation. It has been reported that diacylglycerol and sphingosine-1-phosphate generation, during the synthesis of phospho-sphingolipids, is necessary for both, G1-S transition of cell cycle during the sustained activation of protein kinase C in various cell models (MDCK,SaccharomycesandEntamoeba) and AKT pathway activation. During the estrous cycle of the rat, AKT signaling is the main pathway involved in the regulation of uterine cell proliferation. The aim of the present study was to investigate the role of sphingolipid synthesis during proliferation of uterine cells in the estrous cycle of the rat. On metestrus day, when both luminal and glandular uterine epithelia present the maximal BrdU-labeled cells (S phase cells), there was an increase in the relative abundance of total sphingomyelins, as compared to estrus day. Myriocin, a sphingolipid synthesis inhibitor administered on estrus day, before the new cell cycle of epithelial cells is initiated, decreased the abundance of sphingomyelin, accompanied by proliferation arrest in uterine epithelial cells on metestrus day. In order to study the sphingolipid signaling pathway affected by myriocin, we evaluated the activation of the PKC-AKT-GSK3b-Cyclin D3 pathway. We observed that total and phosphorylated protein kinase C diminished in uterine epithelial cells of myriocin treated animals. Interestingly, cyclin D3 nuclear localization was blocked by myriocin, concomitantly with a decrease in nuclear pRb expression. In conclusion, we demonstrate that sphingolipid synthesis and signaling are involved in uterine epithelial cell proliferation during the estrous cycle of the rat.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3