DHEA protects mitochondria against dual modes of apoptosis and necroptosis in human granulosa HO23 cells

Author:

Tsui Kuan-Hao,Wang Peng-Hui,Lin Li-Te,Li Chia-Jung

Abstract

Because ovarian granulosa cells are essential for oocyte maturation and development, we validated human granulosa HO23 cells to evaluate the ability of the DHEA to prevent cell death after starvation. The present study was aimed to investigate whether DHEA could protect against starvation-induced apoptosis and necroptosis in human oocyte granulosa HO23 cells. The starvation was induced by treatment of serum-free (SF) medium for 4 h in vitro. Starvation-induced mitochondrial depolarization, cytochrome c release and caspase-3 activation were largely prevented by DHEA in HO23 cells. We found that treatment with DHEA can restore starvation-induced reactive oxygen species (ROS) generation and mitochondrial membrane potential imbalance. In addition, treatment of DHEA prevents cell death via upregulation of cytochrome c and downregulation of BAX in mitochondria. Most importantly, DHEA is ameliorated to mitochondrial function mediated through the decrease in mitochondrial ROS, maintained mitochondrial morphology, and enhancing the ability of cell proliferation and ROS scavenging. Our present data strongly indicate that DHEA reduces programmed cell death (apoptosis and necroptosis) in granulosa HO23 cells through multiple interactions with the mitochondrion-dependent programmed cell death pathway. Taken together, our data suggest that the presence of DHEA could be beneficial to protect human oocyte granulosa HO23 cells under in vitro culture conditions during various assisted reproductive technology (ART) programs. Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/154/2/101/suppl/DC1

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3