Acute restraint stress triggers progesterone withdrawal and endometrial breakdown and shedding through corticosterone stimulation in mouse menstrual-like model

Author:

Wang Shu-Fang123,Chen Xi-Hua1,He Bin1,Yin De-Dong1,Gao Hai-Jun4,Zhao Hao-Qi12,Nan Nan12,Guo Shi-Ge12,Liu Jian-Bing125,Wu Bin12,Xu Xiang-Bo1

Affiliation:

1. 1Reproductive Physiology Laboratory, National Research Institute for Family Planning, Beijing, China

2. 2Graduate School of Peking Union Medical College, Beijing, China

3. 3Department of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China

4. 4Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, Texas, USA

5. 5Department of Cell Biology & Genetics, Shanxi Medical University, Taiyuan, Shanxi, China

Abstract

Stress impacts the reproductive axis at the level of the hypothalamus and the pituitary gland, which exert an effect on the ovary. Menstruation is regulated by the hypothalamic–pituitary–ovary (HPO) axis. However, the role of stress in menstruation remains unclear. The objective of this study was to explore the role of stress in endometrial breakdown and shedding, using the pseudopregnant mouse menstrual-like model. Female mice were mated with vasectomized males and labeled day 0.5, upon observation of a vaginal seminal plug. On day 3.5, decidualization was induced in pseudopregnant mice using arachis oil. On day 5.5, pseudopregnant mice with artificial decidualization were placed in restraint tubes for 3 h. The findings indicated that acute restraint stress resulted in the disintegration of the endometrium. While corticosterone concentration in the serum increased significantly due to restraint stress, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and progesterone (P4) levels in the serum decreased significantly. An endometrial histology examination indicated that progesterone implants may rescue P4 decline caused by acute stress and block endometrium breakdown and shedding. In addition, mice were treated with metyrapone, an inhibitor of corticosterone synthesis, 1 h prior to being subjected to restraint stress. Interestingly, metyrapone not only inhibited stress-induced endometrium breakdown and shedding, but also prevented stress-induced reduction of P4, LH and FSH. Furthermore, real-time PCR and western blot showed that mRNA and protein expression of CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and steroidogenic acute regulatory protein (StAR), the two rate-limiting enzymes for progesterone synthesis in the ovary, decreased following acute stress. But metyrapone prevented the reduction of StAR expression induced by restraint stress. Overall, this study revealed that acute stress results in an increase in corticosterone, which may inhibit LH and FSH release in the serum and CYP11A1 and StAR expression in the ovary, which finally leads to the breakdown and shedding of the endometrium. These experimental findings, based on the mouse model, may enable further understanding of the effects of stress on menstruation regulation and determine the potential factors affecting stress-associated menstrual disorders.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3