Transposons and the PIWI Pathway – Genome Defence in Gametes and Embryos

Author:

Russell Stewart J1,LaMarre Jonathan2

Affiliation:

1. S Russell, Research Department, CReATe Fertility Centre, Toronto, Canada

2. J LaMarre, Biomedical Sciences, University of Guelph, Guelph, N1G2W1, Canada

Abstract

Hiding in plain sight within the genome of virtually every eukaryotic organism are large numbers of sequences known as transposable elements (TEs). These sequences often comprise 50% or more of the DNA in many mammals and are transcriptionally constrained by DNA methylation and repressive chromatin marks. Individual TEs, when relieved of these epigenetic constraints, can readily move from one genomic location to another, either directly or through RNA intermediates. Demethylation and removal of repressive histone marks during epigenetic reprogramming stages of gametogenesis and embryogenesis render the genome particularly susceptible to increased TE mobilization, which has significant implications for the fidelity of genome replication and subsequent viability of the progeny. Importantly however, TEs have functionally integrated themselves into developmental events to the extent that complete suppression precludes normal gamete and embryo development. Consequently, multiple mechanisms have evolved to limit the extent of TE expression and mobilization during reprogramming without completely suppressing it. One of the most important TE repression mechanisms is the PIWI/piRNA pathway, in which 25 – 32 nucleotide RNA molecules known as piRNAs associate with Argonaute proteins from the PIWI clade to form piRISC complexes. These complexes target and silence TEs post-transcriptionally and through the induction of epigenetic changes at the loci from which they are expressed. This review will briefly discuss the intricate molecular détente between TE expression and its suppression by the PIWI pathway, with particular emphasis on mammalian species including human, bovine and murine.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynecology,Endocrinology,Embryology,Reproductive Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3