Ubiquitin-proteasome system participates in the de-aggregation of spermadhesins and DQH protein during boar sperm capacitation

Author:

Zigo Michal,Jonakova Vera,Manaskova-Postlerova Pavla,Kerns Karl,Sutovsky Peter

Abstract

We studied the participation of the ubiquitin-proteasome system (UPS) in spermadhesin release during in vitro capacitation (IVC) of domestic boar spermatozoa. At ejaculation, boar spermatozoa acquire low molecular weight (8–16 kDa) seminal plasma proteins, predominantly spermadhesins, aggregated on the sperm surface. Due to their arrangement, such aggregates are relatively inaccessible to antibody labeling. As a result of de-aggregation and release of the outer layers of spermadhesins from the sperm surface during IVC, antibody labeling becomes feasible in the capacitated spermatozoa. In vivo, the capacitation-induced shedding of spermadhesins from the sperm surface is associated with the release of spermatozoa from the oviductal sperm reservoir. We took advantage of this property to perform image-based flow cytometry to study de-aggregation and shedding of boar spermadhesins (AQN, AWN, PSP protein families) and boar DQH (BSP1) sperm surface protein which induces higher fluorescent intensity in capacitated vs ejaculated spermatozoa. Addition of a proteasomal inhibitor (100 µM MG132) during IVC significantly reduced fluorescence intensity of all studied proteins (P < 0.05) compared to vehicle control IVC. Western blot detection of spermadhesins did not support their retention during IVC with proteasomal inhibition (P > 0.99) but showed the accumulation of DQH (P = 0.03) during IVC, compared to vehicle control IVC. Our results thus demonstrate that UPS participates in the de-aggregation of spermadhesins and DQH protein from the sperm surface during capacitation, with a possible involvement in sperm detachment from the oviductal sperm reservoir and/or sperm-zona pellucida interactions. The activity of sperm UPS modulates de-aggregation of boar spermadhesins and DQH sperm surface protein/binder of sperm1 (BSP1) during the sperm capacitation.

Publisher

Bioscientifica

Subject

Cell Biology,Obstetrics and Gynaecology,Endocrinology,Embryology,Reproductive Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3